Что такое датум карты wgs 84. Настройки системы координат (datum) в GPS-приемнике. Полусвободная в азимуте система координат

На момент индустриального рывка в 30-е годы XX века в нашей стране был запрос на полное картографирование всей территории страны. Для этого возникала необходимость в формировании общей геодезической сети всей страны с максимальной точностью в кратчайшие сроки. А по результатам этих измерений в последствие делать выводы, определяться с общенациональной системой координат , точками ее отсчета, с вычислениями параметров Земли, математическими и физическими ее величинами.

Так вот, для выполнения всего этого на Дальнем Востоке и Восточной Сибири, начиная с 1934 года, производились работы по устройству на этой территории страны астрономо-геодезической сети. Исходным пунктом для этого приняли геодезический пункт Черниговский возле города Свободный с исходным астрономическим азимутом на пункт Гащенский и астрономическими координатами. Эти астрономические данные приравнены к геодезическим данным по подобию СК32 . Высоты в исходном пункте Черниговский были также приравнены к нулю в уровенной поверхности геоида и референц-эллипсоида Бесселя, который был принят за правильную поверхность. В результате этих работ по названию города уравненная сеть и система координат получила название Свободненская с датой 1935 года и аббревиатурой СК35.

В 1936 году в районе города Красноярска были соединены общими пунктами две АГС. В результате чего получили сравнение Пулковская (СК32) и Свободненская (СК35) системы координат . При получении в наземных измерениях триангуляционных сетей довольно высокой точности, отклонения оказались существенными (-270м, +790м). Кроме этих двух систем, точно по таким же принципам выбора и ориентирования начальных исходных данных, использовались в разных регионах и другие Магаданско-Дебинская, Петропавловская, Ташкентская системы координат . В них также применялся эллипсоид Бесселя с его параметрами и размерами.

В 1937 году были собраны сведения по всем имеющимся полигонам астрономо-геодезических сетей с формированием каталогов координат. В 1939 году выходят Основные положения ГГС со схемой построения на основе принципов Красовского «от общего к частному», которые соответствовали техническим условиям, экономическим возможностям страны и развивались в дальнейшем.

Так в 40-х годах XX столетия были выполнены колоссальные по объему работ уравнивания общей астрономо-геодезической сети с количеством 4733 пунктов, 87 полигонами и протяженностью порядка 60 тысяч км. В результате полученных данных в центральном НИИ геодезии , аэросъемки и картографии начались работы по определению параметров референц-эллипсоида применительно к территории нашей страны (М.С. Молоденский, А.А. Изотов). В то же время велись работы по астрономо-геодезическому нивелированию (М.С. Молоденский) и вычислению высот геоида.

Результатом этих работ стало получение новых параметров эллипсоида, который в последствие назвали именем Ф.Н. Красовского. А систему координат , принятую для всей страны, учредили в 1946 году. Но дата окончания работ 1942 года стала отправной точкой в ее наименовании СК-42. С 1943года в Главном управлением геодезии и картографии в соответствии с внутренним приказом стали устанавливать исходные геодезические даты. Так в референц-эллипсоиде Красовского основными исходными параметрами (датами) являются:

  • большая полуось эллипсоида, равная 6378245, 000м;
  • малая полуось эллипсоида со значением 6356863,019м;
  • сжатие эллипсоида имеет соотношение 1:298,3;
  • геодезические координаты пункта Сигнал А (B=59º46´15,359"; L=30º19´28,318") возле обсерватории Пулково;
  • геодезический азимут Сигнал А - Бугры 121º06´42,305".

Стоит отметить, что в 1948 году были внесены уточнения по поводу исходных пунктов в системе СК-42. За исходный пункт ГГС был принят Сигнал А, находящийся в двух сотнях метров от центра в зале Пулковской обсерватории.

Назначение системы координат 1942 года

Практически на всех топографических картах, планах, планшетах СССР была указана система координат , в которой они выполнены и таковой была СК42. Так что ее можно называть картографической системой координат . Выше не было сказано о том, что для перехода на плоскую систему координат , которой и является СК42, был использован метод проецирования земной поверхности на плоскость по именам немецких ученых Гаусса - Крюгера. Ее еще называют равноугольной в связи с тем, что после проецировании углы в ней не претерпевают искажений.

По своей геометрической сути СК42 является поперечно-цилиндрической проекцией эллипсоида Красовского. Что имеется ввиду. Все меридианы эллипсоида, находящегося в цилиндре и имеющего с ним одну линию соприкосновения (экватор), проецируются на его внутреннюю поверхность. После чего вся боковая поверхность цилиндра разворачивается на плоскости, что и говорит о ее плоскостном характере. Важно уточнить, что эллипсоид условно делится на шести градусные зоны, количество которых будет равняться шестидесяти (показано на рис.1). Поэтому СК-42 можно еще назвать прямоугольной зональной системой координат . Она предусматривает проецирование каждой из шестидесяти зон отдельно. И такой способ проецирования дает минимальные линейные и площадные искажения. Вдоль осевых меридианов каждой зоны этих искажения нулевые. А вот к краям зон они достигают максимальных значений равных отношению 1/750.

Рис.1. Прямоугольная зональная СК-42.

Каждую шести градусную зону СК-42 можно считать отдельной координатной системой со своим началом в точке пресечения меридианов и экватора, которые являются осями координат соответственно X и Y. Тогда все абсциссы выше экватора имеют положительные значения, а ниже - отрицательные. В России все координаты имеют положительные значения. Для того что бы избежать ненужных отрицательных значений по ординатам, начало координат смешено в каждой зоне по оси Y на 500000 м (см.рис.2).

Рис.2. Координатная система в отдельной зоне.

Даже самая западная граница практически любой зоны имеет координату Y значением в районе +165м. Такое смещение начала координат по ординатам именуют ложным восточным сдвигом.

На территории нашей страны размещается 28 таких зон. Известно, что каждая конкретная точка в СК-42имеет свою пару координат, которые имеют естественно метровые единицы измерения. Но вот сетки координат на топографических планах имеют различные разграфки в зависимости от масштаба. Так топографический план масштаба 1:50000 имеет километровую разграфку. Точка пересечения координатной сетки топографической карты с номенклатурой (N-37-133-B) в юго-западной части имеет такую пару координат (5768;7295), (см. рис.3). Это означает, что угловая точка пересечения находится в 5768 км к северу от экватора, в 7-й зоне и в 205-ти км к западу от зональной оси абсцисс. Для топографической карты с номенклатурой (N-37-144-Г) точка пересечения сетки координат в юго-западной ее части имеет следующие координаты (5768;7690). Что в свою очередь означает нахождение точки в 5768 км севернее экватора, в той же седьмой зоне и в 190 км восточнее оси координат X.

Рис.3. Координатная сетка на карте М 1:50000.

Очевидно, что вся координатная сетка представляет собой прямоугольный вид с возможностью широкого спектра применения для практических целей с достаточной точностью получения результата.

Значение системы координат 1942 года

Трудно переоценить. СК-42 использовалась в экономической, оборонной и научной деятельности государства в течение более 50-ти лет. Ее установление можно считать государственным и профессиональным достижением геодезического сообщества. На ее основе производили построения все последующие координатные системы такие, как СК-95 , ПЗ-90 . И даже в настоящее время при отсутствии геодезических сведений в регламентированных системах координат СК-42 может быть использована и преобразована в необходимую из них, по соответствующим формулам перехода. Многие геодезические пункты СК-42 применяются до сих пор и участвуют только в составе и построениях вновь созданных АГС и СК. И в заключение можно выразить уважение таким выдающимся ученным, как Ф.Н. Красовский, А.А. Изотов, М.С. Молоденский и другим их коллегам, которые осуществили грандиозные геодезические практические и научные преобразования на территории такой большой страны как Россия.

Настройка Datum и отображение метрических координат

Настраивать датум нужно для того, чтобы навигатор показывал местоположение в координатах плоской прямоугольной сетки. Ориентироваться по прямоугольной сетке удобнее, чем по градусным координатам, поскольку каждая линия имеет километровую отметку. Например, на рисунке показан узел сетки с координатами N6190 E7407 .

Если навигатор выдает текущую координату на сетке, по ней можно найти соответствующую точку на бумажной карте. Причем навигатор сообщает координату с точностью до метра. Так, координата из предыдущего абзаца была бы показана в виде N06190000 E07407000 . Благодаря этой способности навигатора можно искать точки на местности, координаты которых выражены в километрах и метрах прямоугольной сетки.

В большинстве случаев указанными задачами исчерпывается необходимость настройки датума. Если высокая точность не требуется, допустим достаточно определить, на каком острове вы находитесь, можно обойтись без датума. Максимальное отклонение на территории России не превысит 140 метров. Если задать датум, также будут корректироваться угловые координаты. Однако, я знаю мало людей, которые этим пользуются.

С Dakota 20 поставляется векторная карта “Дороги России. ТОПО”. Для ее использования настраивать датум не нужно, поскольку он не влияет на позицию графического символа, обозначающего местоположение.

Проекции, проекции...

Наверное, немногие изучали геодезию и знают разницу между проекцией Гаусса-Крюгера и проекцией Universal Transverse Mercator. Я тоже не отношусь к числу знатоков. Попытка сходу вникнуть в суть проекций и координатных систем чуть не довела до мигрени. Зато перед глазами пронеслись любопытные факты. Оказывается, Меркатор - это фамилия средневекового географа, составившего карты Европы, а привычное слово “атлас” - имя древнегреческого персонажа, которого боги обрекли держать небесный свод на плечах.

Все это любопытно, но какое отношение имеет к Dakota? Дело в том, что датум влияет на точность определения координат, как геодезических, измеряемых в градусах - минутах - секундах, так и километровых, отраженных на плоской прямоугольной сетке. Строго говоря, датум служит для пересчета координат из одних координатных систем в другие. Но вся эта математика реализована внутри Dakota и знать ее незачем. Нас интересует конечный результат, который можно увидеть и пощупать. Он воплощен в цифрах на экране. Ради них мы и будем настраивать датум. Но сначала немного о проекциях.

Когда-то географ Меркатор размышлял, как перенести очертания материков со сферической формы на бумагу, чтобы отмеченный на карте азимут можно было взять на компасе и попасть в нужную точку. Меркатор придумал такую модель. Уменьшенный до комнатных масштабов макет Земли оборачивается бумажным цилиндром, а в центр шара ставится свеча. Тени от материков лягут на бумагу, и их нужно обвести карандашом. Так получится карта. Изобретенную карту Меркатор опубликовал в виде книги под названием атлас. Карты в такой проекции по сей день используются в авиации и морской навигации. Их недостаток в том, что линейные размеры сильно искажаются к краям карты. Зато точно выдерживаются азимуты на сколь угодно удаленные объекты.

Большее распространение получили карты в проекции Universal Transverse Mercator (UTM). Ее отличие от предыдущей в том, что воображаемый цилиндр направлен не вдоль оси земли, а поперек. То есть, если ось земли идет сверху вниз, то цилиндр лежит на боку и соприкасается с землей по меридиану. Цилиндр поворачивают и через каждые 6° снимают проекцию поверхности в месте соприкосновения со сфероидом. Получается, что вся земля разделена на сектора по 6°, как апельсин на дольки, и поверхность каждого сектора проецируется на плоскость.

Параллельно с картографией решалась задача о присвоении координат каждой точке на планете и каждой точке на картах. Ее решали многие ученые по всему миру, включая и нашу страну. В 1984 году была принята мировая система координат World Geodetic System (WGS-84), которая позволяет определять широту и долготу любой точки на поверхности Земли, над землей или под землей (водой). Легко догадаться, что третим параметром точки является высота над поверхностью океана либо глубина. Если не настраивать датум, GPS-приемник показывает координаты именно в системе WGS-84 .

В нашей стране и в других странах шли разработки собственных координатных систем, причем задолго до появления WGS-84. В результате были получены системы, которые охватывали локальные территории государств или даже весь земной шар и были смещены относительно друг-друга и относительно более поздней WGS-84. На основе национальных систем были проставлены координаты на национальных картах. Все бы ничего, но в век глобализации хочется прийти к единым стандартам, при этом не отказываясь от результатов титанического труда наших геодезистов и картографов. На помощь пришел датум.

Датум служит для пересчета координат из какой-либо национальной системы в WGS-84 и обратно. По сути это набор корректирующих коэффициентов к общемировым координатам WGS-84.

А зачем приводить общемировые координаты к национальной системе? Выше упоминалась задача ориентироваться по бумажным генштабовским картам. Для этого требуется знать текущее местоположение в координатах метрической сетки. По метрическим координатам легко найти точку на карте, в которой вы сейчас находитесь.

Однако, прямоугольная сетка рассчитана на основе нашей национальной градусной системы. Поэтому навигатор должен привести мировые координаты к национальной системе и уже затем рассчитать положение на метрической сетке. Наша национальная система называется Pulkovo-42 и также известна под именем СК-42. Принята она в 1942 году, а условный центр начала расчетов координат находится в районе Пулково.

На рисунке слева показан экран навигатора Dakota. Булавка установлена на пересечении линий прямоугольной сетки. Как можно видеть, точность определения метрических координат очень высока.

Настройка Datum

Существуют два набора коэффициентов для пересчета координат из WGS-84 в Pulkovo-42. Первый рекомендован агентством NIMA - подразделением американского министерства обороны, второй можно почерпнуть из ГОСТ 51794-2001. Гостовский набор точнее на большей части России. Однако, коэффициенты NIMA усредненно более подходят для всей обширной территории планеты. Линейная разница при вычислении координат по NIMA и ГОСТ составляет от 16 до 20 м на территории России.

Ниже на рисунках показаны значения по ГОСТ 51794-2001, в тексте также приведены значения NIMA.

Чтобы задать датум в Dakota, перейдите в меню Настройка > Формат коорд. > Датум карты > User и введите коэффициенты:

DX = +00024m (NIMA +00028m)

DY = –00141m (NIMA –00130m)

DZ = –00081m (NIMA –00095m)

Указанные параметры задают смещение между центрами эллипсоидов в системах WGS-84 и Pulkovo-42. Эллипсоиды - это математические модели Земли. Наша планета имеет форму не шара, а приплюснутой груши, эллипс точнее соответствует этой форме. Центры эллипсоидов обеих систем расположены в условном центре масс планеты, но с небольшим смещением. В системе Pulkovo-42 эллипсоид носит имя ученого Красовского, который вычислил его параметры.

Перейдите в меню Настройка > Формат коорд. > Сфероид карты > User Spheroid и введите еще два коэффициента (одинаковы для NIMA и ГОСТ):

DA = –00108m

DF = +0.00480795m

Параметры DA и DF определяют разницу между формами эллипсоидов. Параметр DA показывает разницу между длинами больших полуосей, а DF - разницу между коэффициентами сжатия.

Прим.: Истинное значение DF это 4,80795х10 -7 , но чаще значение приводят умноженным на 10 4 .

Теперь нужно задать параметры для пересчета угловых координат в прямоугольные. Для этого перейдите в меню Настройка > Формат коорд. > Формат коорд. > Сетка пользователя > UTM и введите параметры:

Усл. смещение по долготе = 7500000.0m (см. пояснение ниже)

Усл. смещение по широте = 0.0m

Масштаб = 1.0000000

Начало отсчета долготы = 39°00.000’ (для Москвы)

Исходная широта = 00°00.000’

Теперь можно получать местоположение в координатах прямоугольной сетки генштабовских карт. Только помните, что при переходе в другую зону (другой шестиградусный сектор), потребуется изменить координату центрального меридиана зоны. Для Москвы она равна 39°, а, скажем, для Петербурга - 33°, а для Выборга - 27°.

Узнать центральный меридиан зоны можно по индексу листа генштабовской карты. Индекс включает букву и число, например N-37. Здесь число 37 - номер зоны. Если обозначить его через X, то формула центрального меридиана зоны будет такой

(X - 30) * 6 - 3

Вот пример вычисления центрального меридиана зоны, в которой расположена Москва

(37 - 30) * 6 - 3 = 39°

Также номера зон можно узнать из этой . Карта разделена по вертикали на зоны: один столбец - одна зона. Номера зон приведены над столбцами.

И еще замечание касается параметра Усл. смещение по долготе . У меня он равен 7500000. Часто в сети встречается значение 500000. Оно правильное, как правильно и 4500000 и 9500000. Главное, чтобы значение было кратно 500000. Условное смещение просто прибавляется к метрической координате долготы после ее расчета. Для чего, рассказывается дальше.

Каждая зона имеет собственную прямоугольную сетку, начало которой находится на пересечении центрального меридиана зоны с экватором. Правее этого меридиана долгота точек выражается положительными числами, левее - отрицательными. Чтобы сделать все долготы положительными, ввели постоянную поправку - 500000 м, или 500 км. Она просто прибавляется к долготе каждой точки. Даже самые левоудаленные точки зоны ближе к центральному меридиану, чем 500 км, поэтому и их долготы выражаются положительными числами.

Но что происходит, если картами нужно покрыть несколько зон? Поскольку у каждой зоны независимая прямоугольная сетка, точки в разных зонах имеют одинаковые долготы. Чтобы этого не было, на генштабовских картах в разных зонах применяются разные условные смещения по долготе. Смещения увеличиваются от зоны к зоне с запада на восток. Таким образом в разных зонах исключаются одинаковые значения долготы.

Вверху страницы есть фрагмент карты с вертикальной линией сетки 74 07, что означает координату 7407000 метров. Если задать в Dakota условное смещение по долготе равное 500000, навигатор выдаст координату E0407000, то есть не покажет семерку в старшем разряде. Если же задать смещение 7500000 м, будет показана координата E7407000, которая полностью соответствует генштабовской. Такую координату удобнее искать на карте.

Однако, есть ограничения. В Dakota нельзя задать условное смещение еще больше на порядок, хотя на генштабовских картах соответствующие координаты встречаются. Например, в районе Абакана вертикальные линии имеют обозначения 163 72 и т.п. Хотелось бы задать в Dakota смещение 16500000, но увы, навигатор перестанет показывать координаты. Для такого листа можно задать смещение 6500000. Тогда координата определится как E6372000, то есть старшей единички не будет. Но все же это удобнее для поиска координаты на карте.

Понятие «Датум» используется в геодезии и картографии для наилучшей аппроксимации к геоиду в данном месте. Датум задается смещением референц-эллипсоида по осям: X, Y, Z, а также поворотом декартовой системы координат в плоскости осей на угол rX, rY, rZ. Также необходимо знать параметры референц-эллипсоида а и f , где а - размер большой полуоси, f - сжатие эллипсоида.

Чаще всего с датумами приходится сталкиваться в GPS приемниках , в ГИС системах и в картографии при использовании какой-либо локальной координатной сети. Преобразование координат в таких системах из одного датума в другой может, в общем случае, выполняться автоматически. Неверная установка датума (либо неправильное его преобразование) в итоге дает горизонтальные и вертикальные ошибки определения места величиной от нескольких до сотни и даже больше метров .

Список датумов

  • WGS84 (World Geodetic System 1984). Глобальный датум, использующий геоцентрический общемировой эллипсоид, вычисленный по результатам точных спутниковых измерений. Используется в системе GPS . В настоящее время принят, как основной, в США.
  • Пулково-1942 (СК-42, Система координат 1942) Локальный датум, использующий эллипсоид Красовского, максимально подходящего к европейской территории СССР. Основной (по распространенности) датум в СССР и постсоветском пространстве .
  • ПЗ-90 (Параметры Земли 1990) Глобальный датум, основной (с 2012 года) в Российской Федерации.
  • NAD-83 (Nord American Datum 1983). Локальный датум для североамериканского континента.

Всего известно несколько десятков локальных датумов для разных регионов Земли. Почти каждый из них имеет несколько модификаций.

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Датум" в других словарях:

    - (лат. datum). То же, что дата. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ДАТУМ лат. datum. Число месяца на письмах, официальных бумагах. и т.п. Объяснение 25000 иностранных слов, вошедших в употребление в… … Словарь иностранных слов русского языка

    датум - (лат. datum) 1. точно календарско време на некој настан 2. денот во месецот (според редниот број) 3. ознака на календарското време на документ, писмо и сл 4. временска граница, временски миг 5. времето на настанокот, на појавувањето на нешто,… … Macedonian dictionary

    Serbian identity card - (Serbian: Лична карта / Lična karta) is the national identification card used in Serbia. Though the ID card is a primary photo ID, Serbian passport and national Drivers license are used as valid photo IDs for various purposes. It is issued to… … Wikipedia

    Расширение.tiff, .tif MIME image/tiff Тип формата геопространственные метаданные Расширен из TIFF GeoTIFF открытый формат метаданных, позволяющий включать информацию о географической привязке в файлы TIFF. Может включать в себя вид … Википедия

    дата - ы, ж. date f., нем. Datum, пол. data. 1. Помета на документе, письме и т. п. о времени (год, месяц, число) выдачи документа, написания письма и т. п. БАС 2. Я пишу тебе.. вести из различных мест, и потому, признаюсь, что мне хотелось подражать… … Исторический словарь галлицизмов русского языка

Что такое географические координаты?Почему не совпадают координаты? Датум и сферойд карты.

Весь материал взят из Википедии — свободной энциклопедии

Географи́ческие координа́ты - определяют положение точки на земной поверхности или, более широко, в географической оболочке. Географические координаты строятся по принципу сферических . Аналогичные координаты применяются на других планетах, а также на небесной сфере .

Широта́ — угол φ между местным направлением зенита и плоскостью экватора, отсчитываемый от 0° до 90° в обе стороны от экватора. Географическую широту точек, лежащих в северном полушарии, (северную широту) принято считать положительной, широту точек в южном полушарии — отрицательной. О широтах, близких к полюсам, принято говорить как о высоких , а о близких к экватору — как о низких .

Из-за отличия формы Земли от шара, географическая широта точек несколько отличается от их геоцентрической широты , то есть от угла между направлением на данную точку из центра Земли и плоскостью экватора.

Широту места можно определить с помощью таких астрономических инструментов, как секстант или гномон (прямое измерение ), также можно воспользоваться системами GPS или ГЛОНАСС (косвенное измерение ).

Долгота́ — двугранный угол λ между плоскостью меридиана, проходящего через данную точку, и плоскостью начального нулевого меридиана, от которого ведётся отсчёт долготы. Долготу от 0° до 180° к востоку от нулевого меридиана называют восточной, к западу — западной. Восточные долготы принято считать положительными, западные — отрицательными.

Выбор нулевого меридиана произволен и зависит только от соглашения. Сейчас за нулевой меридиан принят Гринвичский меридиан, проходящий через обсерваторию в Гринвиче , на юго-востоке Лондона. В качестве нулевого ранее выбирались меридианы обсерваторий Парижа, Кадиса, Пулкова и т. д.

От долготы зависит местное солнечное время.

Высота

Чтобы полностью определить положение точки трёхмерного пространства, необходима третья координата — высота . Расстояние до центра планеты не используется в географии: оно удобно лишь при описании очень глубоких областей планеты или, напротив, при расчёте орбит в космосе.

В пределах географической оболочки применяется обычно высота над уровнем моря , отсчитываемая от уровня «сглаженной» поверхности — геоида. Такая система трёх координат оказывается ортогональной , что упрощает ряд вычислений. Высота над уровнем моря удобна ещё тем, что связана с атмосферным давлением.

Расстояние от земной поверхности (ввысь или вглубь) часто используется для описания места, однако не служит координатой .

Географическая система координат

В навигации в качестве начала системы координат выбирается центр масс транспортного средства (ТС). Переход начала координат из инерциальной системы координат в географическую (то есть из O i {\displaystyle O_{i}} в O g {\displaystyle O_{g}} ) осуществляется исходя из значений широты и долготы. Координаты центра географической системы координат O g {\displaystyle O_{g}} в инерциальной принимают значения (при расчёте по шарообразной модели Земли):

X o g = (R + h) cos ⁡ (φ) cos ⁡ (U t + λ) {\displaystyle X_{og}=(R+h)\cos(\varphi)\cos(Ut+\lambda)} Y o g = (R + h) cos ⁡ (φ) sin ⁡ (U t + λ) {\displaystyle Y_{og}=(R+h)\cos(\varphi)\sin(Ut+\lambda)} Z o g = (R + h) sin ⁡ (φ) {\displaystyle Z_{og}=(R+h)\sin(\varphi)} где R — радиус земли, U — угловая скорость вращения Земли, h — высота над уровнем моря.

Ориентация осей в географической системе координат (Г. С.К.) выбирается по схеме:

Ось X (другое обозначение — ось E) — ось, направленная на восток. Ось Y (другое обозначение — ось N) — ось, направленная на север. Ось Z (другое обозначение — ось Up) — ось, направленная на вертикально вверх.

Ориентация трёхгранника XYZ,из-за вращения земли и движения Т. С. постоянно смещается с угловыми скоростями .

ω E = − V N / R {\displaystyle \omega _{E}=-V_{N}/R} ω N = V E / R + U cos ⁡ (φ) {\displaystyle \omega _{N}=V_{E}/R+U\cos(\varphi)} ω U p = V E R t g (φ) + U sin ⁡ (φ) {\displaystyle \omega _{Up}={\frac {V_{E}}{R}}tg(\varphi)+U\sin(\varphi)}

Основным недостатком в практическом применении Г. С.К. в навигации является большие величины угловой скорости этой системы в высоких широтах, возрастающие вплоть до бесконечности на полюсе. Поэтому вместо Г. С.К. используется полусвободная в азимуте СК.

Полусвободная в азимуте система координат

Полусвободная в азимуте С. К. отличается от Г. С.К. только одним уравнением, которое имеет вид:

ω U p = U sin ⁡ (φ) {\displaystyle \omega _{Up}=U\sin(\varphi)}

Соответственно, система имеет тоже начальное положение, осуществляется по формуле

N = Y w cos ⁡ (ε) + X w sin ⁡ (ε) {\displaystyle N=Y_{w}\cos(\varepsilon)+X_{w}\sin(\varepsilon)} E = − Y w sin ⁡ (ε) + X w cos ⁡ (ε) {\displaystyle E=-Y_{w}\sin(\varepsilon)+X_{w}\cos(\varepsilon)}

В реальности все расчёты ведутся именно в этой системе, а потом, для выдачи выходной информации происходит преобразование координат в ГСК.

Форматы записи географических координат

Для записи географических координат может использоваться любой эллипсоид (или геоид), но чаще всего используются WGS 84 и Красовского (на территории РФ).

Координаты (широта от −90° до +90°, долгота от −180° до +180°) могут записываться:

  • в ° градусах в виде десятичной дроби (современный вариант)
  • в ° градусах и ′ минутах с десятичной дробью (самый современный вариант)
  • в ° градусах, ′ минутах и ″ секундах с десятичной дробью (исторически сложившаяся форма записи)

Разделителем десятичной дроби может служить точка или запятая. Положительные знаки координат представляются (в большинстве случаев опускаемым) знаком «+» либо буквами: «N» — северная широта и «E» — восточная долгота. Отрицательные знаки координат представляются либо знаком «−», либо буквами: «S» — южная широта и «W» — западная долгота. Буквы могут стоять как впереди, так и сзади.

Единых правил записи координат не существует.

На картах поисковых систем по умолчанию показываются координаты в градусах с десятичной дробью со знаком «−» для отрицательной долготы. На картах Google и картах Яндекс вначале широта, затем долгота (до октября 2012 на картах Яндекс был принят обратный порядок: сначала долгота, потом широта). Эти координаты видны, например, при прокладке маршрутов от произвольных точек. При поиске распознаются и другие форматы.

В навигаторах по умолчанию чаще показываются градусы и минуты с десятичной дробью с буквенным обозначением, например, в Navitel , в iGO. Вводить координаты можно и в соответствии с другими форматами. Формат градусы и минуты рекомендуется также при радиообмене в морском деле. [источник не указан 1939 дней ]

В то же время часто используется и исконный способ записи с градусами, минутами и секундами. В настоящее время координаты могут записываться одним из множества способов или дублироваться двумя основными (с градусами и с градусами, минутами и секундами) . Как пример, варианты записи координат знака «Нулевой километр автодорог Российской Федерации» — 55°45′21″ с. ш. 37°37′04″ в. д. (G) (O) (Я) :

  • 55,755831°, 37,617673° — градусы
  • N55.755831°, E37.617673° — градусы (+ доп. буквы)
  • 55°45.35′N, 37°37.06′E — градусы и минуты (+ доп. буквы)
  • 55°45′20.9916″N, 37°37′3.6228″E — градусы, минуты и секунды (+ доп. буквы)

При необходимости форматы можно пересчитать самостоятельно: 1° = 60′ (минутам), 1′ (минута) = 60″ (секундам). Также можно использовать специализированные сервисы. См. ссылки .

Датум карты

Датум (лат. Datum ) — набор параметров, используемых для смещения и трансформации референц-эллипсоида в локальные географические координаты.

Понятие «Датум» используется в геодезии и картографии для наилучшей аппроксимации к геоиду в данном месте. Датум задается смещением референц-эллипсоида по осям: X, Y, Z, а также поворотом декартовой системы координат в плоскости осей на угол rX, rY, rZ. Также необходимо знать параметры референц-эллипсоида а и f , где а — размер большой полуоси, f — сжатие эллипсоида.

Чаще всего с датумами приходится сталкиваться в GPS-приемниках , в ГИС-системах и в картографии при использовании какой-либо локальной координатной сети. Преобразование координат в таких системах из одного датума в другой может, в общем случае, выполняться автоматически. Неверная установка датума (либо неправильное его преобразование) в итоге дает горизонтальные и вертикальные ошибки определения места величиной от нескольких до сотни и даже больше метров.

WGS 84 (англ. World Geodetic System 1984 ) — всемирная система геодезических параметров Земли 1984 года, в число которых входит система геоцентрических координат. В отличие от локальных систем, является единой системой для всей планеты. Предшественниками WGS 84 были системы WGS 72 , WGS 66 и WGS 60 .

WGS 84 определяет координаты относительно центра масс Земли, погрешность составляет менее 2 см. В WGS 84 нулевым меридианом считается Опорный меридиан, проходящий в 5,31″(~100 м) к востоку от Гринвичского меридиана. За основу взят эллипсоид с бóльшим радиусом — 6 378 137 м (экваториальный) и меньшим — 6 356 752,3142 м (полярный). Практическая реализация идентична отсчётной основе ITRF .

Список датумов

  • WGS84 (World Geodetic System 1984). Глобальный датум, использующий геоцентрический общемировой эллипсоид, вычисленный по результатам точных спутниковых измерений. Используется в системе GPS. В настоящее время принят как основной в США.
  • Пулково-1942 (СК-42, Система координат 1942) Локальный датум, использующий эллипсоид Красовского, максимально подходящего к европейской территории СССР. Основной (по распространенности) датум в СССР и постсоветском пространстве.
  • ПЗ-90 (Параметры Земли 1990) Глобальный датум, основной (с 2012 года) в Российской Федерации .
  • NAD27 (Nord American Datum 1927). Локальный датум для североамериканского континента.
  • NAD83 (Nord American Datum 1983). Локальный датум для североамериканского континента.

Всего известно несколько десятков локальных датумов для разных регионов Земли. Почти каждый из них имеет несколько модификаций.

В пеших путешествиях и велопоездках незаменимым спутником исследователя является топографическая карта. Одной из задач картографии (одной из дисциплин такой науки как геодезия ) является изображение криволинейной поверхности Земли (фигуры Земли) на плоской карте. Для решения этой задачи необходимо выбрать эллипсоид — форму трехмерного тела, приближенно соответствующего земной поверхности, датум — начальную точку системы координат (центр эллипсоида) и начальный меридиан (англ. prime meridian ) и проекцию — способ изображения поверхности этого тела на плоскости.

Эллипсоиды и датумы

В разное время для построения карт использовались различные варианты представления поверхности Земли в виде сферы или эллипсоида.

Представление Земли в виде сферы радиусом 6378137 метра (либо 6367600 метров) позволяет определить координаты любой точки на земной поверхности в виде двух чисел — широты $\phi$ и долготы $\lambda$:

Для земного эллипсоида в качестве (географической) широты используется понятие геодезическая широта (англ. geodetic latitude ) φ — угол, образованный нормалью к поверхности земного эллипсоида в данной точке и плоскостью его экватора, причем нормаль не проходит через центр эллипсоида за исключением экватора и полюсов:

Значение долготы (англ. longitude ) λ зависит от выбора начального (нулевого) меридиана для эллипсоида.
В качестве параметров эллипсоида обычно используются радиус большой (экваториальной) полуоси a и сжатие f .
Сжатие $f = {{a-b} \over a}$ определяет сплюснутость эллипсоида у полюсов.

Одним из первых эллипсоидов был эллипсоид Бесселя (Bessel ellipsoid, Bessel 1841 ), определенный из измерений в 1841 году Фридрихом Бесселем (Friedrich Wilhelm Bessel ), с длиной большой полуоси a = 6377397,155 м и сжатием f = 1:299,152815 . В настоящее время он используется в Германии, Австрии, Чехии и некоторых азиатских и европейских странах.

датум Potsdam (PD)

Ранее для построения карт в проекции UTM использовался международный эллипсоид (International ellipsoid 1924 , Hayford ellipsoid ) с длиной большой (экваториальной) полуоси a = 6378388 м и сжатием f = 1:297,00 , предложенный американским геодезистом Джоном Филлмором Хейфордом ( в 1910 году.

Джон Филлмор Хейфорд

датум ED 50 (European Datum 1950 )

  • эллипсоид — International ellipsoid 1924
  • Greenwich prime meridian )

Для выполнения работ на всей территории СССР с 1946 года (постановление Совета Министров СССР от 7 апреля 1946 г. № 760) использовалась геодезическая система координат СК-42 (Пулково 1942) , основанная на эллипсоиде Красовского с длиной большой (экваториальной) полуоси a = 6378245 м и сжатием f = 1:298,3 . Этот референц-эллипсоид назван в честь советского астронома-геодезиста Феодосия Николаевича Красовского. Центр этого эллипсоида сдвинут по отношению у центру масс Земли примерно на 100 метров для максимального соответствия поверхности Земли на европейской территории СССР.

датум Пулково-1942 (Pulkovo 1942)

  • эллипсоид — Красовского (Krassowsky 1940 )
  • нулевой меридиан — гринвичский меридиан (Greenwich prime meridian )

В настоящее время (в том числе и в системе GPS ) широко используется эллипсоид WGS84 (World Geodetic System 1984) с длиной большой полуоси a = 6378137 м, сжатием f = 1:298,257223563 и эксцентрисетом e = 0,081819191 . Центр этого эллипсоида совпадает с центром масс Земли.

датум WGS84 (EPSG:4326)

  • эллипсоид — WGS84
  • нулевой меридиан — опорный меридиан (IERS Reference Meridian (International Reference Meridian)) , проходящий в 5,31″ к востоку от Гринвичского меридиана. Именно от этого меридиана отсчитывается долгота в системе GPS (англ. GPS longitude )

Центр системы координат WGS84 совпадает с центром масс Земли, ось Z системы координат направлена на опорный полюс (англ. IERS Reference Pole (IRP)) и совпадает с осью вращения эллипсоида, ось X проходит по линии пересечения нулевого меридиана и плоскости, проходящей через точку начала координат и перпендикулярную к оси Z , ось Y перпедикулярна оси X .


Альтернативой эллипсоиду WGS84 является эллипсоид ПЗ-90 , используемый в системе ГЛОНАСС , с длиной большой полуоси a = 6378136 м и сжатием f = 1:298,25784 .

Преобразования датумов

При простейшем варианте перехода между датумами Пулково-1942 и WGS84 необходимо учитывать только смещение центра эллипсоида Красовского по отношению к центру эллипсоида WGS84 :
рекомендовано в ГОСТ 51794-2001
dX = +00023,92 м; dY = –00141,27 м; dZ = –00080,91 м;
рекомендовано в World Geodetic System 1984 . NIMA, 2000
dX = +00028 м; dY = –00130 м; dZ = –00095 м.
Следует отметить, что выше приведены усредненные значения коэффициентов, которые для более точного преобразования должны вычисляться для каждой точки земной поверхности индивидуально. Например, для соседней с Беларусью Польшей эти параметры таковы:
dX = +00023 м; dY = –00124 м; dZ = –00082 м (по данным )
Такое преобразование называется трехпараметрическим .
При более точной трансформации (преобразовании Молоденского ) необходимо учитывать разницу между формами эллипсоидов, определяемую двумя параметрами:
da — разница между длинами больших полуосей, df — разница между коэффициентами сжатия (разница в уплощении). Их значения одинаковы для ГОСТ и NIMA :
da = – 00108 м; df = + 0,00480795 ⋅ 10 -4 м.

При переходе между датумами ED 50 и WGS84 параметры преобразования таковы:
da = – 00251 м; df = — 0,14192702 ⋅ 10 -4 м;
для Европы dX = -87 м; dY = –96 м; dZ = –120 м (по данным User’s Handbook on Datum Transformations involving WGS-84, 3-е издание, 2003 ).

Набор из указанных пяти параметров (dX , dY , dZ , da , df ) может вводиться в навигатор или навигационную программу в качестве характеристики используемого пользователем датума.

Проекции

Способ изображения трехмерной земной поверхности на двумерной карте определяется выбранной картографической проекцией .
Наиболее популярны (нормальная ) цилиндрическая проекция Меркатора и такая ее разновидность как поперечно-цилиндрическая проекция Меркатора (Transverse Mercator ).

В отличие от известной в течение веков нормальной проекции Меркатора, которая особенно хороша для изображения экваториальных областей, поперечная проекция отличается тем, что цилиндр, на который проецируется поверхность планеты, повернут на 90°:

Цилиндрическая проекция Меркатора

Сферическая проекция Меркатора

Для сферической проекции действуют следующие формулы перевода широты $\phi$ и долготы $\lambda$ точки на поверхности земной сферы (в радианах) в прямоугольные координаты $x$ и $y$ на карте (в метрах):
$x = (\lambda — {\lambda}_0) \cdot R$ ;
$y = arcsinh (\tan (\phi)) \cdot R =\ln { (\tan{ ({\phi \over 2} + {\pi \over 4} }) }) \cdot R$
(logarithmic tangent formula ) ,
где $R$ — радиус сферы, ${\lambda}_0$ — долгота нулевого меридиана.
Масштабный коэффициент $k$ представляет собой отношения расстояния по сетке карты (англ. grid distance ) к локальному (геодезическому) расстоянию (англ. geodetic distance ):
$k = {1 \over {\cos \phi}}$.
Обратный перевод реализуется с помощью таких формул:
$\lambda = {x \over R} + {\lambda}_0 $ ;
$ \phi = {\pi \over 2} — 2 \arctan(e^{-y \over R}) $ .
Важной для мореплавания особенностью проекции Меркатора является то, что линия румба (англ. rhumb lines ) или локсодрома (англ. loxodrome ) на ней изображается прямой линией.
Локсодрома — это дуга, пересекающая меридианы под одним и тем же углом, т.е. путь с постоянным (локсодромическим ) путевым углом.
Путевой угол , ПУ (англ. heading ) - это угол между северным направлением меридиана в месте измерения и направлением линии пути, отсчитывается по часовой стрелке от направления на географический север (0° применяется для указания направления движения на север, 90° — на восток).
Локсодромы являются спиралями, совершающими неограниченное число витков, приближаясь к полюсам.


Следует отметить, что локсодрома не является кратчайшим путем между двумя точками — ортодромой, дугой большого круга , соединяющей эти точки.

Web Mercator

Вариант меркаторовской сферической проекции используется многими картографическими сервисами, например, OpenStreetMap, Google Maps, Bing Maps.


В OpenStreetMap карта мира представляет собой квадрат с координатами точек по осям x и y , лежащими между -20 037 508,34 и 20 037 508,34 м. Как следствие, на такой карте не показаны области, лежащие севернее 85,051129° северной широты и южнее 85,051129° южной широты. Это значение широты $\phi_{max}$ является решением уравнения:
$\phi_{max} = 2\arctan(e^\pi) — {\pi\over 2} $ .
Как и любой карте, составленной в проекции Меркатора, ей свойственны искажения площадей, наиболее ярко проявляющиеся при сравнении изображенных на карте Гренландии и Австралии:

При прорисовке карты в OpenStreetMap координаты (широта и долгота) на эллипсоиде в системе WGS84 проецируются на плоскость карты так, как будто эти координаты определены на сфере радиусом R = a = 6 378 137 м (перепроецирование) — сферическое представление эллипсоидальных координат («spherical development of ellipsoidal coordinates «). Этой проекции, получившей название Web Mercator ) соответствует EPSG (European Petroleum Survey Group ) код 3857 («WGS 84 / Pseudo-Mercator «).
Перепроецирование из EPSG:4326 в EPSG:3857 ($\phi ,\lambda \rightarrow x,y $) реализуется по вышеприведенным формулам для обычной сферической проекции Меркатора.
На такой карте направление на север всегда соответствуют направлению на верхнюю сторону карты, меридианы представляют собой равноотстоящие друг от друга вертикальные линии.
Но такая проекция в отличие от сферической или эллиптической проекции Меркатора не является равноугольной (конформной ), линии румба в ней не являются прямыми. Линия румба (локсодром ) — это линия пересекающая меридианы под постоянным углом.
Преимуществом рассматриваемой проекции является простота вычислений.

В указанной проекции карта может быть расчерчена прямоугольной сеткой координат (по значениям долготы и широты).
Привязку карты (сопоставление прямоугольных координат на карте и географических координат на местности) можно осуществить по $N$ точкам с известными координатами. Для этого необходимо решить систему из $2 N$ уравнений вида
$X = \rho_{\lambda} \lambda — X_0$ , $Y = arcsinh (\tan (\phi)) \cdot \rho_{\phi} — Y_0 $ .
Для решения системы уравнений и определения значений параметров $X_0$ , $Y_0$ , $\rho_{\lambda}$ , $\rho_{\phi}$ можно использовать, например, математический пакет Mathcad .
Для проверки правильности привязки карты можно определить отношение длин сторон прямоугольника построенной сетки. Если горизонтальная и вертикальная стороны прямоугольника соответствуют одинаковой угловой длине по долготе и широте, то отношение длины горизонтальной стороны (дуги параллели — малого круга) к длине вертикальной стороны (дуги меридиана — большого круга) должно быть равно $\cos \phi$ , где $\phi$ — географическая широта места.

Эллиптическая проекция Меркатора

Эллиптическая проекция Меркатора (EPSG:3395 WGS 84/World Mercator ) используется, например, сервисами Яндекс.Карты , Космоснимки.
Для эллиптической проекции действуют следующие формулы перевода широты $\phi$ и долготы $\lambda$ точки на поверхности земной сферы (в радианах) в прямоугольные координаты $x$ и $y$ на карте (в метрах):
$x = (\lambda — {\lambda}_0) \cdot a$ ;
$y = a \ln (\tan ({\pi \over 4} + {\phi \over 2}) ({{1 — e \sin {\phi}} \over {1 + e \sin {\phi}}})^{e \over 2}) $ ,
где $a$ — длина большой полуоси эллипсоида, $e$ — эксцентриситет эллипсоида, ${\lambda}_0$ — долгота нулевого меридиана.
Масштабный коэффициент $k$ определяется выражением:
$k = {{\sqrt {(1 — {e^2} {{(\sin \phi)}^2})}} \over {\cos \phi}} $ .
Обратный перевод реализуется с помощью таких формул:
$\lambda = {x \over a} + {\lambda}_0 $ ;
$ \phi = {\pi \over 2} — 2 \arctan(e^{-y \over a} ({{1 — e \sin {\phi}} \over {1 + e \sin {\phi}}})^{e \over 2}) $ .
Широта вычисляется по итерационной формуле, в качестве первого приближения следует использовать значение широты, вычисленной по формуле для сферической проекции Меркатора.

Поперечно-цилиндрическая проекция Меркатора

Чаще всего используются две разновидности поперечно-цилиндрической проекции Меркатора — проекция Гаусса-Крюгера (англ. Gauss — Krüger ) (получила распространение на территории бывшего СССР) и универсальная поперечная проекция Меркатора (англ. Universal Transverse Mercator (UTM )).
Для обеих проекций цилиндр, на который происходит проекция, охватывает земной эллипсоид по меридиану, называемому центральным (осевым) меридианом (англ. central meridian, longitude origin) зоны. Зона (англ. zone ) - это участок земной поверхности, ограниченный двумя меридианами с разностью долготы в 6°. Всего существует 60 зон. Зоны полностью покрывают поверхность Земли между широтами 80°S и 84°N.
Отличие двух проекций заключается в том, что проекция Гаусса-Крюгера — это проекция на касательный цилиндр, а универсальная поперечная проекция Меркатора — это проекция на секущий цилиндр (для избежания искажений на крайних меридианах):

Проекция Гаусса-Крюгера

Проекция Гаусса-Крюгера была разработана немецкими учёными Карлом Гауссом и Луи Крюгером.
В этой проекции зоны нумеруются с запада на восток, начиная с меридиана 0°. Например, зона 1 простирается с меридиана 0° до меридиана 6°, ее центральный меридиан 3°.
В советской системе разграфки и номенклатуры топографических карт зоны называются колоннами и нумеруются с запада на восток, начиная с меридиана 180°.
Например, Гомель и окрестности относятся к зоне 6 (колонне 36 ) с центральным меридианом 33°.
Зоны/колонны делятся параллелями на ряды (через 4°), которые обозначаются заглавными латинскими буквами от А до V , начиная от экватора к полюсам.
Например, Гомель и окрестности относятся к ряду N . Таким образом, полное название листа карты масштаба 1:1 000 000 (10 км в 1 см), изображающей Гомель, выглядит как N-36 . Этот лист делится на листы карт более крупного масштаба:


Для Беларуси и соседних стран разграфка такова:

Для определения по топографической карте положения точки на карту наносят сетку прямоугольных координат X и Y , выраженных в километрах. Она образована системой линий, параллельных изображению осевого меридиана зоны (вертикальные линии сетки, оси X ) и перпендикулярных к нему (горизонтальные линии сетки, оси Y ).
На карте масштаба 1:200 000 расстояние между линиями сетки составляет 4 км; на карте масштаба 1:100 000 - 2 км.
Координата X подписывается на вертикальных краях листа карты и выражает расстояние до экватора, а координата Y подписывается на горизонтальных краях листа карты и состоит из номера зоны (первые одна или две цифры значения) и положения точки относительно центрального меридиана зоны (последние три цифры значения, причем центральному меридиану зоны присваивается значение 500 км).


фрагмент листа N36-123 советской топографической карты масштаба 1:100 000

Например, на вышеприведенном фрагменте карты надпись 6366 возле вертикальной линии сетки означает: 6 — 6-я зона, 366 — расстояние в километрах от осевого меридиана, условно перенесенного западнее на 500 км, а надпись 5804 возле горизонтальной линии сетки означает расстояние от экватора в километрах.

Универсальная поперечная проекция Меркатора

Универсальная поперечная проекция Меркатора (UTM ) была разработана инженерными войсками США (United States Army Corps of Engineers ) в 1940-х годах.

Для построения карт в проекции UTM ранее использовался эллипсоид International 1924 — сетка UTM (International) , а в настоящее время — эллипсоид WGS84 — сетка UTM (WGS84) .
В этой проекции зоны нумеруются с запада на восток, начиная с меридиана 180°.
Эта система используется вооруженными силами США и НАТО (англ. United States and NATO armed forces ):

Каждая зона разделена на горизонтальные полосы через каждые 8° широты. Эти полосы обозначены буквами, с юга на север, начиная от буквы C для широты 80° S и заканчивая буквой X для широты 84° N . Буквы I и O пропущены для избежания путаницы с цифрами 1 и 0. Полоса, помеченная буквой X , занимает 12° по широте.
Зона в этой проекции обозначается номером (англ. longitude zone ) и буквой (каналом широты, англ. latitude zone ):


На этом рисунке видны две нестандартные зоны долготы — зона 32V расширена для покрытия всей южной Норвегии, а зона 31V сокращена для покрытия только водного пространства.
Для Гомеля и окрестностей зона обозначается как 36U с центральным меридианом 33°:

Зона покрывается прямоугольной (километровой) сеткой (сеткой по универсальной поперечной проекции Меркатора, СУППМ):


Длина стороны квадрата сетки в вышеприведенном фрагменте карты составляет 10 км.

Точка начала системы координат для каждой зоны определяется пересечением экватора и центрального меридиана зоны.
Координата E (Easting ) на такой сетке представляет собой расстояние на карте от центрального меридиана в метрах (к востоку — положительное, к западу — отрицательное), к которому прибавлено + 500 000 метров (англ. False Easting
Координата N (Northing ) на такой сетке представляет собой расстояние на карте от экватора в метрах (к северу — положительное, к югу — отрицательное), причем в южном полушарии это расстояние вычитается из 10 000 000 метров (англ. False Northing ) для избежания появления отрицательных значений.
Например, для левого нижнего угла квадрата сетки на вышеприведенной карте координаты записываются как
36U (либо 36+ ) 380000 5810000 ,
где 36 longitude zone , U latitude zone , 380000 easting , 5810000 northing .

Преобразование широты и долготы в координаты UTM поясняется рисунком:


P
— рассматриваемая точка
F — точка пересечения перпендикуляра, опущенного на центральный меридиан из точки P , с центральным меридианом (точка на центральном меридиане с тем же самым northing , что и рассматриваемая точка P ) . Широта точки F (англ. footprint latitude ) обозначается как $\phi ‘ $ .
O — экватор
OZ — центральный меридиан
LP — параллель точки P
ZP — меридиан точки P
OL = k 0 S — дуга меридиана от экватора
OF = N northing
FP = E easting
GN — направление на север сетки карты (англ. grid north )
C — угол схождения меридианов (англ. convergence of meridians ) — угол между направлением на истинный север (англ. true north ) и на север сетки карты

При преобразовании прямоугольных координат (X , Y ) для проекции Гаусса-Крюгера на эллипсоиде WGS84 в прямоугольные координаты (N , E ) для универсальной поперечной проекции Меркатора на том же эллипсоиде WGS84 необходимо учитывать масштабный коэффициент (англ. scale factor ) $k_0 = 0,9996 $ :
$ N = X \cdot k_0 $ ;
$ E = Y_0 + Y \cdot k_0 $ ,
где $ Y_0 = 500 000 $ метров.

Указанный масштабный коэффициент $k_0 = 0,9996 $ верен только для центрального меридиана зоны. При удалении от осевого меридиана масштабный коэффициент изменяется.

Примечание. Погрешность считывания координат с карты (georeferencing accuracy ) обычно принимается равной ±0,2 мм. Именно такую точность имеют устройства, применяемые при создании аналоговой карты.

Геоид

Следует отметить, что более точным приближением поверхности нашей планеты является геоид (англ. geoid ) — эквипотенциальная поверхность земного поля тяжести, т. е. поверхность геоида везде перпендикулярна линии отвеса. Но сила тяжести определяется векторной суммой гравитационной силы со стороны Земли и центробежной силы, связанной с вращением Земли, поэтому потенциал силы тяжести не совпадает с чисто гравитационным потенциалом .
Геоид совпадает со средним уровнем Мирового океана, относительно которого ведется отсчет высот над уровнем моря .
Геоид имеет сложную форму, отражающую распределение масс внутри Земли, и поэтому для решения геодезических задач геоид заменяется эллипсоидом вращения. Наиболее современной математической моделью геоида является EGM2008 , пришедшая на смену популярной модели EGM96 .

Продолжение следует.

Похожие статьи

© 2024 teslya--show.ru. Windows. Интернет. Программы. Восстановление данных. Вирусы.